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in Fig. l(b) of this work (Cz+). To allow for the ob- 
served intensity increase in the reflexions {021} and 
{040}, which are not allowed by Cz +, Weitzel concludes 
that the magnetic structure at LHeT has an antiferro- 
magnetic x component. This component causes a 
symmetry reduction, and the magnetic space group is 
Pn 'c2'. 

It was shown in this work that, allowing for small 
parameter changes (conforming with the RT space 
group Pbcn), the most probable structure is Cz ÷ (space 
group Pbc'n') with or without an x component of weak 
ferromagnetism, which is allowed by Pbc'n'. We pro- 
pose this structure, using the established principle that 
the choice of the highest possible symmetry model is 
the logical choice (Cox, 1972). 

The symmetry Pbc'n' conforms also with the second- 
order phase-transition theory (Landau & Lifshitz, 
1958; Mukamel, 1973). This theory in our case (ortho- 
rhombic symmetry, and no cell enlargement) allows 
only a symmetry reduction by a factor of two, through 
the loss of the time-inversion operator, as is the case 
with Pbc'n' (whereas the reduction from Pbcn to 
Pn'c2' is by a factor of four). 

The refiexions {021} and {040} may include, ac- 
cording to this proposal, nuclear and ferromagnetic 

contributions (no contributions from Fe203 are 
detected in our patterns). A discrepancy in the intensity 
calculation of the reflexions {050} and { 111 } is not 
solved in Weitzel's work because these refiexions are 
not resolved in his pattern. These reflexions cannot be 
quantitatively resolved in our longer-wavelength 
pattern. 

The authors are indebted to Professor S. Shtrikman 
of the Weizmann Institute of Science for providing the 
sample and for many helpful discussions. Discussions 
with Professor U. Atzmoni and Mr G. Dublon of this 
laboratory were much appreciated. 
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The integrated reflectivity from an incident homogeneous beam (or plane wave) is shown to be a volume 
integral involving the intensity diffracted by a source point located on the surface of incidence of the 
crystal. Owing to the boundary conditions, the solution of the equations for extinction (either kinematical 
or dynamical) is often simpler with point sources than plane waves. The property that is established 
extends the domain of solution of diffraction theories: it is applied to mosaic-crystal equations and to the 
case of perfect crystals. In the latter case, a physically meaningful solution is found for primary extinction. 

Introduction 

Extinction can be treated through various models 
originating in either kinematical (intensity coupling) 
or dynamical (wave coupling) theories. Kato (1976) 
has partially reconciled the two approaches, solving 
Takagi's (1969) equations in a statistical way under 
definite conditions. For optical coherence length 
smaller than the extinction distance, he obtained in- 
tensity coupling equations which can be shown to be 
identical with those employed to describe mosaic 
theories (Becker, 1977). The solution to these equations 
has been looked for by Zachariasen (1967), Becker & 

Coppens (1974) and Werner (1974). Kato's demonstra- 
tion is obtained via the relation that exists between 
spherical and plane-wave theories of diffraction. 

Homogeneous beams (or plane waves) are of general 
use in diffractometry. It will be shown that the solu- 
tion for any set of diffraction equations can be de- 
composed into the superposition of contributions from 
point sources that are located on the surface of the 
crystal. The integrated reflectivity is then transformed 
into a volume integral, where the function to be inte- 
grated is the intensity diffracted by a point source as- 
sociated with the variable point in the crystal. 

The method will be then applied to mosaic and 
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perfect crystals, in the Laue geometry. A new solu- 
tion is thus obtained for primary extinction, that is 
derived from dynamical equations. 

diffracted intensity at M. We shall distinguish the 
cases where M belongs to the arc DA' or the arc 
A'C, A' being defined in Fig. 2. 

1. Case of intensity-coupling equations to represent 
the diffraction process 

Let Uo and uh be the unit vectors along the incident 
and diffracted beam directions. Fig. 1 shows the cross- 
section of a convex-shaped crystal cut by a plane 
containing Uo and Uh. 

For an incident homogeneous beam (or a plane 
wave) the surface of incidence on the crystal is ADB, 
and the exit surface CBD. The incident and diffracted 
beam cross-sections are respectively ab and Cd. Let 
x and y be the coordinates along these two segments. 

Because of the intensity coupling, it is possible to 
decompose the incident beam into a superposition of 
narrow slits. The direction z perpendicular to the plane 
of diffraction is irrelevant and we can consider the 
slit as a superposition of independent point sources 
like S. For a unit power the incident intensity of 
source S is: 

Jo(S)--  c$(x - xz). (1) 

Let So and Sh be the coordinates of a point along axes 
defined by the point S and the directions Uo and Uh. 

The exit surface associated with the incidence point 
S is pq, the projection of which is a/7 (on cd). One can 
write: 

Jo(S) =(sin 20)- l~$(Sh) • (2) 

Let M be a point on the exit surface pq. We represent 
the intensity diffracted at M, originating from S as: 

(sin 20)-IIh(M/S) (3) 

where Ih(M/S) refers to the incident beam C$(Sh). The 
integrated diffracted intensity is: 

P(S)=(sin 20)- ~ 1" Ih(M/S)dl. Uh (4) 
. I  Pq 

where I is the curvilinear coordinate on the surface pq. 
Thus: 

P(S)=(sin 20) -1 ~ Ih(M/S)dy. 
3 

The integrated intensity of the entire homogeneous 
beam is given by: 

P=ffP(S)dxdz. (5) 

P may be a function of e, the departure angle from 
Bragg's law, and represents the rocking curve. The 
integrated diffracted power is finally given by: 

~ =  i- Pde.  (6) 

# 1  

i ¢  

We now consider a point M on the exit surface 
DBC and look for the sources S that contribute to the 
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Fig. 1. Cross-section of the crystal on a plane parallel to the vectors 
u0 and Uh. 
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Fig. 2. The exit point M belongs to the arc DA'. 
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(a) M ~ DA'. The relevant sources S are associated 
with a given point m along PM,  as shown in Fig. 2. 
If we consider any point m in the domain limited by 
the line ADA'A,  we notice that: 

Sm = To, m M  = T'h 

where To and Th are the optical paths associated with 
m. 

(b) M ~ CA'. The situation is depicted in Fig. 3. If 
m lies between R and M, the conclusion is the same 
as in case (a). But source points located on AQ also 
contribute to the diffracted intensity at M. If m is 
taken along RP, a unique source S can still be as- 
sociated with m. 

From this discussion, we mu~t consider the domain 
limited by the line ADBCEA.  With any point in this 
domain are associated a unique source S and a unique 
point M on the exit surface, with: 

S m =  To, m M =  T'h . 

Let I(m) be the quantity: 

l (m)=Ih(M/S)  . (7) 

The positions of S (or S) and m are related by: 

dxz = (sin 20)dSh(m) . 

If v' is the volume where m is to be varied, the ex- 
pressions (4)--(6) can be written in the final desired 
form: 

 =fdefodol(m). (8) 

2. Case of amplitude-coupling equations to describe 
the diffraction process 

This is a case for which perfect-crystal theory applies. 
The demonstration employs the relation between 
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Fig. 3. The exit point belongs to the arc A'C. 

spherical and plane-wave theories. This has been 
discussed by Kato (1974, 1976) and we shall here only 
summarize his final discussion. 

An incident spherical wave is assumed to impinge 
on the crystal at S. The amplitudes of the incident 
and diffracted waves are Do and Dh, and the boundary 
condition is: 

Do=6(Sh) (9) 

for a beam of unit power. Coordinates x and y along 
the directions ab and cd (which are the wave fronts 
for an incident plane wave) satisfy: 

x = Sh sin 20, y = So sin 20.  

If an incident plane wave with a given departure 
angle, e, from Bragg's law is considered, its wave vector 
K will have a component K:,=Ke.  The e-dependent 
part of the incident plane wave can be written as: 

e x p  (2rciKex)= J exp (2n iKexz )6 (x -x~)dxz .  (10) 

The diffracted amplitude corresponding to the incident 
spherical wave is D~h(So, Sh) or D~,(X--Xs, y - -ys )  where 
Xs and Ys are related by the equation of the surface 
of the crystal. 

Relation (10) shows that the diffracted amplitude 
for an incident plane wave is given by: 

D~,(x, y )= (sin 20)- 1 

x ~ exp (2niKexs)D~,(x - Xs, y -  ys)dxs .  
3 

The integrated diffracted intensity ~P for the plane 
wave is: 

= ( 2 / s i n 2 2 0 ) f f d y d z f d x s l D ~ ( X M - x S ,  YM-Ys) l  2 • 

From arguments similar to those employed in § 1, one 
obtains the final relation: 

~P=(2/s in  20) ~ lS(m)dv, (11) 
d 

where IS(m) is the intensity diffracted at M and originat- 
ing from an incident spherical wave of unit power at S. 

In both kinematical and dynamical theories of ex- 
tinction, an important  difficulty in solving the models 
comes from the boundary conditions at the surface 
of the crystal. The exact solution is very difficult to 
find, unless the entrance and exit surfaces on the crystal 
do not overlap appreciably (Bonnet, Delapalme, 
Becker & Fuess, 1976). Equations (8) and (11) allow 
one to solve the problem in many cases, as will be 
shown below and in a separate article. 
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3. Application to mosaic crystals, Laue geometry 

We shall illustrate the method in the case of mosaic 
crystals, under Laue geometry, as assumed in previous 
treatments (Becker & Coppens, 1974; Bonnet, 
Delapalme, Becker & Fuess, 1976; Kato, 1976), and 
obtain in a more elegant way the solution proposed 
by Becker & Coppens, which can be generalized to 
other geometries. 

Let a source point be S, and M be a point where 
one looks for the diffracted intensity Ih(M/S). The 
situation is summarized in Fig. 4. The Laue-geometry 
assumption is equivalent to the fact that all points 
in the parallelogram S a M b  belong to the crystal. The 
coupling equations are: 

OIo/OSo = - o.(Io - Ih) , 

Olh/OSh : -- o.(Ih -- Io) .  (12) 

If we write: 

I o = J o  exp [ -  o.(So + Sh)], 

Ih=Jh exp [--o.(So + Sh)], (13) 

where-o.(e) is the coupling function, (12) transforms to: 

OJo/cOso = o.Jh , 

~Jh/OSh = o.J o. (14) 

We assume the boundary condition: 

Io=~(sh). 

Thus, after a unique diffraction along the axis Sso, 
the diffracted intensity is given by: 

lim Ih(So, ~/) = O. exp (-- o.So) • 
r/-~O 

Integrating the second equation (14), one obtains: 

Jh(So, Sh)=o. f~Jo(So ,  V)dv+o..  

° b  
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Fig. 4. Laue geometry for a point source. 
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Fig. 5. Complex geometry for a point source (Laue-Bragg). 

Since Io(0, Sh)= 0, one has also" 

Jo(So, V)--afi°Jh(U,v)du. 
Finally, one obtains" 

Jh(So, Sh)•o. 2 f l  0 f] Jh(u,v)dudv+a. (15) 

Defining L as the integral operator: 

Lf -- a2 f ~ f ~ dudv f , (16) 

(15) can be written formally (Werner, 1974)" 

(1 - -L)Jh=o. .  (17) 

It is important to observe that the Laue-geometry 
assumption only affects the limits of integration in 
(15) or (16). For more complicated geometries, as for 
example in Fig. 5, the domain of integration is the 
shaded area. 

(17) may be expanded as" 

J h = 2  L"a.  (18) 
n 

Each term in (18) corresponds to the contribution 
from the (2n + 1)-times scattered beam. Obviously: 

La  = O.3SoS h , 

L"O.= o .2"+ l(SoSh)"/(n l)2. 

Thus Jh is given by: 

Jh(So, Sh) = O.Io[2o.(SoSh)I/2] , (19) 

where l0 is the zero-order modified Bessel function of 
the first kind. 

Using equations (8) to obtain the homogeneous- 
beam solution, and noticing that the volumes v and v' 
are the same in the Laue case, we obtain: 

J J 0 

(20) 

t 
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for the integrated power, and the extinction coefficient 
y is given by: 

y = ~ / Q v  (21) 

( e2 FvC)2 23 
Q =  m--c -2 - sin 20 '  

with C being the polarization factor (Becker & 
Coppens, 1974). 

The solution is thus the same as obtained previously. 
But we see from the derivation that geometrical con- 
ditions only arise in the limits of integration and the 
method can be employed for more general cases. 

4. Application to perfect crystals, Laue geometry 

We shall follow the arguments of Kato (1974). Takagi's 
equations are written" 

ODo/~So = iz~Dh 

ODh/OSh = izhDo (22) 

where Xh is the Fourier coefficients of the electrical 
susceptibility of the crystal: 

e 2 ,,~C Fh " 
Zh : mc 2 V 

We take as a boundary condition for S: 

D o  = (~( Sh) . 

Following the same derivation as for mosaic-crystal 
equations, we obtain: 

Dh= Z L"(iZh) 
n 

where 

Lf = - x.x  f i° f f dudv 
Thus one obtains: 

Dh= iZhdO[2(XhZT;SoSh) 1/2] 

(23) 

(24) 

as also derived by Kato. Applying (11) we obtain for 
the integral reflectivity: 

~ =  [Xh122/sin 20 [" dv[Jo[Z(XhXnToTh)l/2][ 2 , 
J u 

where J0 is a zero-order Bessel function. We obtain 
for the extinction in a perfect crystal: 

y=v -1 [" [Jo[Z(zh~ToT'h)l/z]12dv. (25) 
.I 

Equation (25) is a rigorous derivation for primary ex- 
tinction. (20) has been shown to be a very satisfactory 
approximation for secondary extinction in the case of 
small diffraction angles. Similarly, (25) is to be con- 
sidered as a reasonable representation of primary ex- 
tinction. 

Generalization to other geometries will be con- 
sidered separately. In the case of anomalous trans- 
mission, the argument of the Bessel function in (25) 
is complex and this corresponds to the Borrmann 
effect, which will be also discussed separately. 

Conclusion 

Even under the limitations of Laue geometries, the 
property that has been derived allows one to cal- 
culate in a physical sense the primary extinction coef- 
ficient, which was not possible before. 

The author is indebted to Professor Kato for several 
enlightening discussions. 
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